
Estimating Heart Rate and Detecting Feeding Events of Fish
Using an Implantable Biologger

Yiran Shen
Data61, CSIRO, Australia

yiran.shen@csiro.au

Reza Arablouei
Data61, CSIRO, Australia

reza.arablouei@csiro.au

Frank de Hoog
Data61, CSIRO, Australia

frank.dehoog@csiro.au

Jaques Malan
O & A, CSIRO, Australia

jaques.malan@csiro.au

James Sharp
O & A, CSIRO, Australia

james.sharp@csiro.au

Sara Shouri
Data61, CSIRO, Australia

sara.shouri@yahoo.com

Timothy D. Clark
School of Life and Environmental

Sciences, Deakin University, Australia

t.clark@deakin.edu.au

Carine Lefevre
AIMS, Australia

c.lefevre@aims.gov.au

Frederieke Kroon
AIMS, Australia

f.kroon@aims.gov.au

Andrea Severati
AIMS, Australia

a.severati@aims.gov.au

Brano Kusy
Data61, CSIRO, Australia

brano.kusy@csiro.au

ABSTRACT

Monitoring of physiology and behavior of marine animals living

undisturbed in their natural habitats can provide valuable data on

their well-being and response to environmental stressors. We focus

on detection of feeding of predatory fish using implantable biolog-

gers that record electrocardiogram (ECG) signals. We propose a

novel processing pipeline for resource-constrained embedded sys-

tems that can infer higher-level information, such as heart-rate and

feeding events, from the ECG signals. Our main contribution is a

lightweight change-detection algorithm, that can reliably detect

fish feeding in noisy heart-rate data based on unique statistical prop-

erties of feeding-induced changes in heart-rate. We evaluate our

approach using an in-house biologger that we surgically implant in

twelve coral trouts over a period of ten weeks. We show that our

signal processing pipeline performs well with noisy ECG signals

overall. Specifically, our heart-rate estimation algorithm achieves

errors of less than one beat per minute even in scenarios where

popular algorithms used by domain scientists perform poorly. Fur-

thermore, our feeding detection algorithm achieves good accuracy

and matches the performance of state-of-the-art algorithms while

requiring significantly less memory and computational resources.

This work is an important first step towards long-term monitoring

of high-level condition and health of marine animals in the wild.

KEYWORDS

Animal energetics, biosensor, change detection, heart-rate estima-

tion, resource-constrained system.

1 INTRODUCTION

Industrialization and economic growth have come at the expense of

negative impacts on many natural ecosystems. There is a global con-

sensus that a better stewardship of our planet is imperative [20, 35].

However, despite a substantial progress in environmental man-

agement, recent news is not good: Australia’s Great Barrier Reef

has been severely impacted by warm temperatures in an unprece-

dented scale leading to up to 30% die-off of coral in 2016 [23]; mass

extinction of reptiles and amphibians has been observed in Latin

America [2]; and the average rate of extinction in vertebrate species

over the last century has been estimated to be 100 times higher

than the background rate [9].

Environmental management plans and policies are only as good

as the quality of the models that they rely on to quantify the ef-

fects of various stressors on the environment. Advances in remote

and in-situ sensing technologies have improved our capability to

collect detailed geomorphological, geophysical, and geochemical

data across vast areas. However, many natural habitats harbor intri-

cate ecological interactions between thousands of animal and plant

species. This complexity makes it difficult to estimate the accurate

physiological state of any ecosystem or to predict undesirable and

potentially irreversible changes [6]. It is important to bridge this

gap and develop effective technologies for monitoring physiology

and behavior of animals in coastal marine ecosystems.

In this paper, we present a signal processing pipeline for reliable

detection of fish feeding using heart-rate data (see Figure 1). Feed-

ing is an important component of fish energetics, i.e., the balance

sheet of energy intake against energy expenditure. Energetics re-

lates to important health and body condition indicators, including

metabolic factors, physical exertions, tissue synthesis, reproductive

success, and stress. Frequency and quantity of feeding can also pro-

vide valuable insights into food chain composition and predation

rates.

On the technical level, we assume that a fish is implanted with a

tiny biologger that collects and processes ECG data, and communi-

cates the results back to the user to achieve long-term monitoring.

The question is, can we use the ECG data from ectothermic1 fish to

estimate their feeding? It has been observed that the heart rate of

1Ectothermic animals regulate their body temperature by relying on external heat
sources from the environment.
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Figure 1: Use of implantable biosensor for monitoring fish

energetics in marine ecosystems.

fish is elevated while feeding. The heart rate decreases gradually

after the feeding over a period whose length depends on the amount

of the feed [11]. This can be used as an indicator to estimate the

energy intake of fish. However, heart rate of fish can vary due to

several factors such as muscle activity, digestion, ambient tempera-

ture, and a range of stressors. Our goal is to develop an algorithm

that reliably detects feeding events from heart-rate time-series data

extracted from noisy ECG signals. A key fact is that food diges-

tion in fish increases the metabolic rate that can be observed as

increased heart-rate. The digestion typically takes longer than a

typical fight or flight response, so careful statistical evaluation can

detect feeding events even if the underlying signal is noisy.

We propose signal processing and analytics algorithms that pro-

cess noisy ECG data to extract heart-rate and identify feeding events.

The noise in the ECG data can be significant due to multiple fac-

tors. The main noise source is the activity of other muscles. Fish

motion can generate electric signatures or physical movement of

the ECG electrodes and introduce peaks that resemble heart beats.

Some erroneous peaks may be identified and rejected using ac-

celerometry data. However, other physiological activities, such as

respiration, can be more subtle and may not have a strong signature

in accelerometry data despite distorting the ECG data severely. We

propose several strategies to address the error sources including

heartbeat peak augmentation, robust peak detection, and a set of

peak validation criteria applied as post-filtering. The preprocessing

steps allow us to obtain good quality heart-rate data from noisy

ECG signals.

Preprocessed heart-rate data can still combine several signals

induced by different physiological activities. Our key contribution

is a lightweight Bayesian algorithm capable of recognizing feeding-

related signals despite the presence of other physiological signals

and noise. The algorithm works by detecting a change in the un-

derlying statistical properties of heart-rate that is consistent with

fish feeding. Recall that food digestion has a signature that is statis-

tically different from other activities. Specifically, a feeding event

causes a rapid increase in the heart-rate that is sustained over a sub-

stantial period of time. The algorithm looks for significant changes

in the statistics of the heart-rate series over a short period of time.

The rate and duration of the observed statistical changes are the

key parameters that allow us to distinguish fish feeding from other

activities.

We pay special attention to computation and memory resources

of the proposed algorithms as our goal is to run the algorithms

directly on embedded micro-controllers. This will enable long-term

operation of biologgers under strict energy and communication

budgets that are typical for wild-life monitoring.

We conducted a controlled experiment to collect data from live

fish. We used commercial and in-house biologgers that collect elec-

trocardiogram (ECG), tri-axial acceleration, ambient temperature,

and atmospheric pressure/depth data. While the loggers collect

data related to both energy intake and expenditure, we focus our

analysis on ECG data only. We implanted biologgers in coral trouts

in a facility with six fish tanks and conducted feeding trials over

a period of ten weeks. Water temperature in the tanks was con-

figured to simulate daily cycles during different weather seasons.

During the experiment, we fed the fish with several pieces of food

and manually recorded the feeding event data including date, time,

and size of the feed. At the end of the experiment, the data was

retrieved from the biologgers by removing them from the fish as the

devices do not currently have any through-water communication

capability.

Our analysis of the ECG data in this paper can be divided into

two parts. First, we estimate heart-rate from noisy ECG signals.

We have asked a domain expert to manually label ECG peaks in

a subset of the fish data, so that we can quantify performance of

our heart-rate estimation algorithm. The algorithm achieves high

performance with an average error of 0.14 beats per minute (bpm),

substantially outperforming three existing heart-rate estimation

algorithms in scenarios where significant noise is present.

Second, we evaluate our Bayesian change-detection algorithm in

simulation and on the empirical data traces from the fish. We pose

the feeding detection as a classification problem, where the goal

is to determine whether a fish feeds during a 24-hour period. Our

algorithm achieves an equal-error rate2 of 0.15 on the empirical

data. The algorithm performs similarly to the state-of-the-art algo-

rithms for change detection. However, it consumes less data and

requires considerably less memory and computations facilitating

its operation on embedded micro-controllers.

2 BACKGROUND AND RELATEDWORK

The area of implantable and wearable sensors for free-living an-

imals has seen a rapid progress in the last two decades driven

mainly by the advances in miniaturization and bio-compatibility of

electronics [32]. Sensors have been deployed to measure motion,

physiological, behavioral, and environmental animal data. They

have contributed to improved understanding of migratory path-

ways, foraging patterns, habitat use, and responses of animals to

environmental changes.

In this section, we review the relevant literature and discuss key

motivations and developments in biosensor research.

2The error rate that balances false-positive and false-negative error rates.
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2.1 Sensing Animal Physiology

Physiological sensors have revolutionized our understanding of

animal species in the wild [37]. Animals can react to human pres-

ence through fight or flight responses and may trigger release of

stress hormones leading to increased heart-rate, respiration, and

energy availability. The long-term effects of stress due to frequent

disturbance has been shown to result in lower reproductive success

and higher disease susceptibility [18]. Heart-rate biosensors have

been specifically used in a wide range of studies measuring the

energetic response of animals to human activities such as aircraft

noise [7], ecotourism at breeding sites [18], and UAV noise [17].

It has been shown that physiological responses of animals may

not always translate into observable behavioral responses. Thus,

it is important to consider the implications of long-term stress on

animal well-being even when short-term negative effects are not

conspicuous.

2.2 Bioenergetics

Organisms and their cells must perform work to stay alive, grow,

and reproduce using energy harvested from various sources. Bioen-

ergetics studies the energy flows in living cells of individual ani-

mals [27]. The underlying concept of energetics is relatively simple.

Organisms consume the chemical energy stored in food to synthe-

size complex molecules and generate motion, heat, and metabolism

byproducts. Energetic status of an animal has implications on both

individual animals as well as population-level processes. Bioenerget-

ics has been used to explain animal behavior, selection of migration

routes, habitat selection, and behavioral response to environmental

changes [16, 24]. Characterization of feed intake that we study in

this paper is an important component of bioenergetics models.

2.3 Fish Biosensors

A range of commercial sensors (e.g., Star-Oddi [26]) and research

prototypes have been used to collect information about fish behav-

ior in general and fish energetics in particular [16, 32]. Our focus

here is on the detection and characterization of fish feeding.

2.3.1 Movement. Accelerometer and electromyogram (EMG) sen-

sors can provide data on fish activity levels and rates of movement.

They can be calibrated to provide information about energy ex-

penditure or to classify specific fish behavior [13, 22, 38]. While

accelerometer data can be used to classify fish feeding, the method

suffers from false positives as it is difficult to distinguish successful

and failed predation events, using accelerometer data alone.

2.3.2 Temperature. While primarily used to provide insights into

habitat use [34], implanted temperature sensors can yield infor-

mation about feeding for species of fish that are not completely

ectothermic. For example, some tuna fish and lamnid sharks pos-

sess vascular heat exchangers that function to retain metabolically-

derived heat in specific regions of the body. This enables some

species to exhibit a heat increment following feeding. This so-called

“heat increment of feeding” has been used to quantify individual

meal sizes [10, 11, 36]. However, temperature-based feeding detec-

tion only applies to a handful of fish species.

2.3.3 ECG/Heart-Rate. For most fish, the heat increment of feeding

is not visible because they rapidly lose any metabolically-derived

heat across the gills and surface of the body. Nevertheless, meal

sizes can still be estimated in these species by exploiting the link

between digestion and increased blood flow. The increase in blood

flow during the digestive period is typically mediated by an increase

in heart-rate [4, 13, 14]. Several implantable sensors have been

proposed in the literature and are even commercially available from

Star-Oddi [34]. Our algorithms are independent of the underlying

hardware. However, it is worth noting that unique design of our

in-house heart-rate logger allows it to minimize fish discomfort

while recording ECG data at a superior quality, when compared to

commercial sensors.

2.4 ECG Algorithms

2.4.1 Heart-rate. Heart-rate can be obtained by analyzing fre-

quency components of ECG time-series data. Common preprocess-

ing steps include band-pass and low-pass filters to remove noise

outside of the target frequency range [21]. As the heart-rate fre-

quency may vary for different species, preprocessing algorithms

require careful tuning. Popular techniques for ECG data analysis

include frequency domain transformations such as Fourier [15]

and wavelet transformation [33]. The final step is to apply peak

detectors, to either find the dominant peak in the frequency do-

main, or to directly find peak-to-peak distances within time domain.

Post-processing can further improve heart-rate estimation accu-

racy, by enforcing custom parameters, e.g., minimum peak-to-peak

distance, or peak amplitude thresholds. Peak-to-peak distance is

trivially related to heart-rate through the known sampling rate.

2.4.2 Feeding Detection. There exists limited prior work on de-

tection of fish feeding in the lab or in the wild. Vision-based ap-

proach [31] works well when the water is clear and fish is within

the camera field of view. However, its usability is limited by the

sensing coverage. Acceleration-based detection [5] using data from

implantable biologgers solves the coverage problem, but suffers

from false detections caused by unsuccessful prey motions. In this

paper, we rely on the heart-rate time-series extracted from ECG sig-

nals. We reformulate the feeding detection problem as the change

detection problem which has been well-studied in the literature [3].

For example, Bayesian inference algorithms for change detection

have been proposed, capable of operating both in offline [19] and

online [1] modes. These algorithms estimate the probability of a

significant change of statistical properties of a time-series signal

and label each such occasion as the change point. Our contribution

extends this work and proposes a lightweight change detection

algorithm that has the potential to be executed in real time on

resource-constraint micro-processors.

3 FISH FEEDING DETECTION AND
CHARACTERIZATION

In this section, we present the algorithms for estimation of fish

heart-rate from noisy ECG data and detection of feeding events.
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Figure 2: The processing pipeline for heart-rate estimation and feeding event detection. The first and second subfigures from

the left present examples of the ECG samples and detected heartbeat peaks (marked in red), respectively. The series of detected

heart-rate values of a fish over two weeks are shown in the third and fourth subfigures as green dots. The ground-truth and

detected feeding events are marked with black lines and blue dots in the fourth subfigure.

3.1 Processing Pipeline Overview

We summarize our processing pipeline in Figure 2. The process

starts with signal acquisition by biologger that lasts for the duration

of the experiment. Data is then downloaded to the computer and

preprocessed to filter out errors. This process generates samples

defined as 11.38-second-long snapshots of ECG, accelerometer, and

other sensor data. Samples are separated by a period of 3.5 minutes

during which no data is recorded. We apply our heart-rate estima-

tion algorithm to each ECG sample to compute the corresponding

median heart-rate. A post-filtering step discards low-quality sam-

ples and interpolates data to infer the missing and discarded values.

Finally, we propose a new lightweight change detection algorithm

to determine feeding events based on the heart-rate values.

3.2 Data Acquisition and Preprocessing

We briefly describe the data acquisition process (more details are

in Section 4.1.2). The biologger periodically records 1024 values of

ECG in on-board storage, sampled at 90Hz. Therefore, it records a

11.38-second snapshot of ECG and acceleration data, i.e., a sample.

Due to memory and energy constraints, the logger then turns off

for 3.5 minutes.

The aim of the preprocessing step is to clean the ECG data and

convert it to a format suitable for heart-rate estimation. We split the

entire data collected by the biologger into individual 11.38-second-

long samples and discard samples that have missing or corrupt

values.

3.3 Heart-Rate Estimation

Heart-rate estimation from ECG time-series data is an important

step towards detection of feeding events. We show an example of

ECG data in Figure 3. Note that the ECG data is noisy and affected

by other physiological phenomena such as respiration and body

movement.

3.3.1 Sources of error. We first characterize different sources of

error in ECG time-series data. Figure 3 clearly shows that other

factors are at play that introduce significant periodic signals in our

data. We asked a fish physiologist in our team to mark the true

ECG peaks corresponding to heart beats and correlate the other

spurious ECG peaks with underwater video footage of the fish.

0 2 4 6 8 10

Time (s)

−0.5

0.0

0.5

1e7 Raw ECG Sample with Detected Peaks

0 2 4 6 8 10

Time (s)

0

1

1e13 Heartbeat Peaks Augmentation

Figure 3: Example of ECG time series (upper) and aug-

mented heartbeat peaks (lower)

We confirmed that the slower fluctuations in the ECG signal (cf.

Figure 3) correspond to the movements due to respiration. Simi-

larly, other abrupt body movements, such as rubbing or fighting,

introduce strong irregular peaks in the signal. The key observation

is that despite having smaller amplitude, heartbeat related ECG

peaks are sharper compared to other peaks, indicating they have a

unique signature in the frequency domain.

3.3.2 Heartbeat peak augmentation. We propose the following

light-weight algorithm to identify heartbeat peaks. Assume we

are working with the I th sample denoted by

X I = {x I1, x
I
2, x

I
3, ..., x

I
n }

where n equals 1024 in our case. We first calculate the second-order

central differences of the values in the sample as

x Iд,i =
x Ii−2 − 2x

I
i + x

I
i+2

4
. (1)

For the boundary points, the difference between the first (last) and

second (second last) values are computed. We discard x Iд,i with

positive values and square the rest to obtain the set of values

X I
s =

{(
x Iд,i

)2
if x Iд,i < 0 for i = 1, . . . ,n

}
. (2)

40

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on February 03,2021 at 08:31:24 UTC from IEEE Xplore.  Restrictions apply. 



This procedure augments the peaks associated with heartbeats, see

Figure 3 for an example. The figure demonstrates that smaller but

narrower peaks induced by heartbeats are augmented and the wider

peaks are suppressed.

3.3.3 Instantaneous heart-rate calculation. After the augmentation

step, we apply a peak detection algorithm. A peak detector finds

the local maxima of X I
s that satisfy certain fish biology and signal

amplitude conditions, i.e., 1) the distance between any two consec-

utive peaks should be at least 45, corresponding to the maximum

instantaneous heart-rate of 120 beats per minute (bpm) and 2) we

only consider peaks whose amplitudes are in top-50 per sample.

Having detected the peaks, we can then use the inverse of the

intervals between consecutive peaks as estimates of the instanta-

neous heart-rate. Specifically, assume that the peak detector finds

the location ofm peaks, i.e., indexes ofm peaks in the sample, as

{l I1, l
I
2, l

I
3 .., l

I
m }.

The instantaneous heart-rate in bpm between peaks at l Ij and l
I
j+1

is calculated as

hIj =
60(

l Ij+1 − l Ij

)
/90

(3)

where 60 is the number of seconds in aminute and 90 is the sampling

rate of the ECG signal.

3.3.4 Median heart-rate estimation. We use the median value of

the instantaneous heart-rates hIj to find the sample heart-rate h
I .

As noted previously, ECG signals are noisy and our filtering

algorithm cannot resolve all problems, i.e., it does not remove all

non-heart-related ECG peaks and it cannot reconstruct missing

heartbeat peaks. We show two typical examples of erroneous and

missing heartbeat peaks in Figure 4. Our algorithm has missed a

peak between peaks 7 and 8 in the top plot and misidentifies peak 6

as a heartbeat in the bottom plot. These errors can lead to inaccurate

instantaneous heart-rate estimation and can impact accuracy of the

median estimator, if a significant number of them are present in

the sample.

0 2 4 6 8 10

Time (s)

−5000000

0

5000000

1

2

3 4 5 6 7 8

Partly Corrupted Data Sample with Missing Peaks

0 2 4 6 8 10

Time (s)

−5000000

0

5000000

1
2

3
4 5 6

7

Partly Corrupted Data Sample with Spurious Peaks

Figure 4: Examples of partly corrupt samples withmissed or

misidentified peaks.

Therefore, we introduce an additional criterion that enforces

consistency of the instantaneous heart-rates within each sample.

We opted against discarding the partially corrupt samples as it

would reduce our dataset size. Instead, we propose a statistics-based

approach to deal with such samples. Assume a set of instantaneous

heart-rates denoted by

hI =
{
hI1,h

l
2, ..,h

I
m−1

}

with mean μ(hI ) and standard deviation δ (hI ). We consider any

sample hIj to be a dispensable outlier if it fulfills

hIj > μ(hI ) + cδ (hI ), j = 1, . . . ,m (4)

where c is a tunable design parameter.

3.3.5 Post-filtering. Pre-filtering removes samples that are severely

corrupt or heart-rate estimates that are inconsistent with other

data points. We use two additional simple post-filtering criteria to

improve the quality of data: we remove instantaneous heart-rate

estimates lower than 20 bpm and higher than 120 bpm, which is the

expected range for our target fish species. We also discard heart-rate

estimates with less than three instantaneous samples. Finally, we

apply cubic spline interpolation to fill small gaps in the heart-rate

data.

The proportion of the discarded samples for 12 fish from our

dataset are shown in Table 1. For majority of the fish, low percent-

age of data was discarded, indicating that the quality of our data

collected in the experiment is generally good.

fish ID Y1 G1 Y2 R2 Y3 R3

outliers 21.4% 1.42% 0.64% 3.13% 2.02% 0.73%

Fish ID G4 G5 YB1 YB3 YR1 RG5

outliers 9.79% 8.14% 23.35% 0.74% 5.18% 5.27%

Table 1: Percentage of the data samples discarded as outliers

for 12 fish.

3.4 Detecting Feeding Events

We first briefly discuss the key assumptions we make about the

relationship between feeding and heart-rate in fish [11]. Fish have a

natural baseline heart-rate that relates to the ambient temperature,

genotype, health status, and other physiological factors. However, a

fish can rapidly change its heart-rate in response to various stimuli

including feeding, predation, reproduction, and disease. In particu-

lar, feeding has a distinguishing feature as it commonly results in a

rapid increase in the heart-rate followed by a gradual decrease over

a period of several hours (up to tens of hours depending on size of

the feed). Figure 5 shows an example of heart-rate estimates with

manually-labeled feeding events over a period of about two weeks.

We observe that each feeding event has a significant impact on the

estimated heart-rate trace. This impact can be modeled as a change

in the statistical properties of the heart-rate estimates and located

using a change-point detection algorithm [3]. Change-point detec-

tion algorithms can be roughly categorized into offline and online

approaches. Due to high computational complexity and latency,

offline approaches are generally not suitable for implementation

on resource-constrained devices or long-term deployments.
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Figure 5: Median heart-rate values together with manually

recorded feeding times.

3.4.1 Lightweight Bayesian Online Change-Point Detection. We

propose an algorithm for detecting feeding events that is based on

existing Bayesian online change detection algorithm [1]. Wemodify

the algorithm to suit the resource constraints of our implantable

biologger. The proposed algorithm can process long-term heart-

rate time-series data and relies on the fact that the heart-rate of

fish remains elevated after feeding resulting in statistical properties

that are distinct from the baseline.

Bayesian online change detection and growing resource

consumption. The algorithm proposed in [1] estimates the prob-

ability of change for each point of a time series in a sequential

manner using a Bayesian inference approach. Let the sequence

of values in a time series be {x1, x2, x3, .., xt , xt+1, ..., xT } with M
change points at indexes {c1, c2, .., cm, cm+1, ..., cM }, which sepa-
rate the sequence into M − 1 segments. The Bayesian approach

assumes the values within each segment are independent and iden-

tically distributed (i.i.d.) and are generated by a random process

with probability density function (PDF) p(xt |θρ ) where θρ is a pa-
rameter for the ρth segment. The underlying random processes of

different segments are assumed to be independent. The Bayesian

approach estimates the probability of change Pc for each data point
based on the probabilities at the previous data points and the prior

probability for the current point. Then, the change points can be

determined by thresholding the probability of change.

The run-length variable rt is defined for xt to provide more

robust estimation of the probability of change at time t . Intuitively,
the run-length represents howmany of the future points are needed

to compute Pct at current time t and these future points are treated
as being from the same distribution as the current point. The run-

length process introduces system delay. For example, if rt = k and
the time interval between two consecutive data points is d minutes,
the inherent delay of the Bayesian-based online algorithm is kd
minutes. However, for monitoring fish feeding, e.g., in aquaculture,

the primary concern is whether the fish is regularly fed and real-

time response is not necessary.

Bayesian online change detection is a continuous chain-like

processing algorithm. The probability Pct for current instance t
is dependent on all the previous data points and their probability

distributions. Therefore, the probabilities and parameters of the past

distribution should be recorded. This means the required memory

and computations increase over time and may exceed the capacity

of our low-cost biologger in a long-term deployment.

Chain-breaking points. The resources required for a long-

term deployment are primarily determined by the length of the

chain used in Bayesian inference, which utilizes all past informa-

tion. We propose a lightweight version of Bayesian online change-

point detection by inserting chain-breaking points at appropriate

positions to restrict the memory usage while incurring minimal

degradation in performance, i.e., the accuracy of estimating Pct .
We insert two types of chain-breaking points to break the chain

and discard the obsolete prior information. The first is when the

algorithm finds a point with high probability of change (Pct ) at time
t . As discussed above, the data points in each segment are assumed
to be i.i.d. and the PDFs of different segments are independent.

Therefore, the inaccuracies introduced by breaking the chain at

the points with high Pct will be negligible. The second type of

chain-breaking points corresponds to the case when the length of

the chain exceeds a pre-defined length dictated by the resource

constraints of the embedded system. However, we need to take

care of the corner case when a new change point appears right

after we break the old chain due to exceeding the maximum length.

Specifically, we need to ensure that a sufficient number of points

from the old distribution is recorded, for the purposes of the new

change point calculation.

3.4.2 Resource Consumption Analysis. Our fish feeding detection

algorithm is intended for in-situ processing on low-cost biosensors.

Therefore, resource consumption is a key factor in the algorithm

design. As mentioned before, the resource consumption of the

original Bayesian online change-point detection algorithm [1] in-

creases over time as all the previous information must be kept in

the memory to infer the probability of change for the latest point.

Hence, the growing memory requirement limits its practical usage

on resource-constrained devices or long-term deployments. Our

extension of the algorithm with the chain-breaking mechanisms

limits the maximum memory and computations required by the

algorithm. We introduce parameter L, the maximum length of the

data-point sequence stored in the memory, to control the resource

usage of the change-point detection algorithm.

Let the maximum length be L and the we need maintain a gen-
eralized Student’s t-distribution for Bayesian-based inference. The
algorithm keeps five variables for each data point: one variable to

hold the probability value and four variables to update the param-

eters of generalized Student’s t-distribution [25]. Therefore, the

maximum number of parameters needed to be kept in memory

for our proposed algorithm is 5L as compared to the original algo-
rithm [1] that stores 5N parameters for a data trace of length N . As
the computation of the probability of change is proportional to the

number of previous points considered, our lightweight approach

saves significant amounts of computation when N is large. For

example, when N = 10, 000 and L = 1000, the proposed algorithm
performed around eight times faster than the original algorithm on

our dataset.
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(a) (b)

Figure 6: Our implantable biosensor compared with coin (a)

and its inner layout (b).

4 EXPERIMENTS

We evaluate the heart-rate estimation and feeding detection algo-

rithms in experiments with live fish using in-house and commercial

Star-Oddi biologgers in the National Sea Simulator (SeaSim). SeaSim

is a premiere marine research facility located at the Australian In-

stitute for Marine Sciences (AIMS) in Townsville, Australia. The

facility provides laboratory space that allows researchers to verify

complex scientific hypothesis in long-term experiments. We first

present the in-house biologger in more detail and then outline the

experimental design.

4.1 Biologger Design

It has been shown, that externally attached devices have nega-

tive impacts on the swimming performance of fish, compromising

both well-being of the animal as well as the quality of the data [8].

Therefore, we opted for an implantable sensor design.

While commercial sensors exist, we designed our own biologger

as a platform for running proprietary signal processing and ana-

lytics algorithms as well as to experiment with the physical sensor

dimensions to enable minimally-invasive long-term data collection

from live fish. Specifically, we positioned one of the electrodes at

the end of a flexible shielded wire (see Figure 6), rather than on the

main sensor body as is typical in commercial sensors. This allows

us to position the electrode close to fish heart whereas the main

biosensor body can be positioned in the fish’s body cavity to reduce

its adverse impact on the fish. As we will show later in the paper,

this novel design allows our sensor to collect higher quality ECG

data compared to commercial single-body sensors.

4.1.1 Hardware Design. The key objective for our hardware de-

sign was small physical size. We use a half-AA-size Li-Po primary

cell with capacity of 1.2 Ah at 3.6V. The battery can be replaced

when depleted. The enclosure is made of 3D-printed acrylic with a

stainless-steel end cap on one side that acts as an ECG electrode and

a flexible shielded wire lead on the other side as the second ECG

electrode. The spatial separation of the two electrodes is the key

feature of our sensor design and helps to simultaneously improve

signal fidelity and fish well-being as discussed above. The biolog-

ger can record high-frequency tri-axial acceleration, ECG, ambient

Sensor Sample rate Information

ECG 90 Hz Bioelectrical signals generated by

heart muscle depolarizations.

Accelerometer 90 Hz Acceleration along 3-axis, represen-

tative of activity levels and fish body

orientation.

Temperature one Internal body temperature, represen-

tative of ambient temperature for ec-

totherms.

Pressure one Internal body pressure, representa-

tive of depth.

Table 2: Sensor components of our implantable biosensor.

temperature, and water pressure sensor data in an on-board mem-

ory (see Table 2). We did not include any communication interface

on the logger and the data needs to be downloaded using wired

connection after the experiment.

The biologger is controlled with a 32-bit Atmel AVR micro-

controller to acquire data from all sensors. Hardware constraints

are typical for the CPU family: the maximum speed of 84MHz,

128KB of SRAM, and 256KB of program memory. We use a 256 MB

on-board NAND flash memory for data logging.

Our biologger currently does not feature any wireless under-

water communication capability, although we have a miniature

acoustic (sonar) communication module under development. Con-

sidering the cost and range of underwater sonar communication

and the scarcity of available resources on the device, transmitting

raw data wirelessly is impractical. However, by taking advantage

of the lightweight signal-processing algorithms presented in the

previous section, the device will require to transmit only higher

level information, such as median heart-rates or detected feeding

events, a few times per day allowing continuous operation of the

sensor for months or years, depending on the application.

4.1.2 Biosignal Acquisition. The ECG sensor is an analogue compo-

nent that translates bio-electrical signals generated by the heart to

numerical values using a 24-bit analog-to-digital converter (ADC).

The small potential difference between the two electrodes is am-

plified by 1700 times and a basic 1.6 Hz to 100 Hz bandpass filter

is applied before digitization at 90 samples per second. The ADC

offers further analog amplification if required.

In order to minimize drain on the battery, the biosensor is com-

pletely powered down except for the real-time clock (RTC). Upon

RTC alarm, power is applied and the sensor records one sample

sequence, before returning to power-off state. The sample sequence

consists of a single measurement of pressure and temperature and

continuous measurement of acceleration and ECG for a duration

of about 11.4 seconds at 90 samples per second. This continuous

sample period is long enough to capture a number of heart beats in

order to calculate beats per minute as well as inter-beat variance.

The sampling interval can be configured to suit the deployment

length and battery/memory capacity.

4.1.3 Time Synchronization. Time-synchronization of the data is

achieved by using the on-board RTC. Synchronization proceeds

in two steps. First, we synchronize the RTC chip with universal
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time coordinated (UTC) time when the sensor is prepared for de-

ployment and record the time and date in a log file. Second, we

synchronize the RTC with UTC time again when the sensor is re-

trieved and record the time and date in a log file. The difference

between the elapsed on-board and UTC times allows us to calculate

clock drift in the RTC. After estimating the clock drift, we retro-

spectively correct timestamps of all samples in our data trace. This

simple clock offset compensation mechanism only works if the

RTC clock drifts linearly over time. This assumption is not true

in real-world conditions, as changes in temperature and battery

voltage will cause the RTC clock to drift non-linearly. However, we

have measured the overall clock drift to be on the order of approx-

imately 10 seconds over a 10-week period. Hence the non-linear

drift introduces negligible errors for the purposes of the analysis in

this paper.

4.1.4 Power Consumption. Given the energy resources at our dis-

posal are limited, low power consumption was a key objective in

the sensor design. Our CPU had several low-power modes to reduce

its idle power consumption. However, we opted for a configura-

tion with a switch that cuts power to all circuits other than the

RTC during the sleep mode. This helped us to achieve the current

draw of 1.76 uA in sleep mode. In the active mode, we had reduced

the clock frequency of CPU to 12 MHz which was sufficient for

our computations, resulting in 6.24mA current draw3. Our aver-

age power consumption during the experiment was approximately

70uA, due to the 3.5 minute sampling duty cycle. Given the capacity
of our battery, we could have significantly increased the sampling

frequency, however, we were limited to the 3.5 minute interval by

our storage constraints.

4.2 National Sea Simulator (SeaSim)

The SeaSim facility enables researchers to examine the impact of

complex environmental changes in tropical marine environments

through large and long-term experiments. Specifically, scientists

can manipulate key environmental factors such as light, tempera-

ture, acidity/pCO2, salinity, sedimentation and contaminants using

fine-scale control reflecting current and projected future environ-

mental conditions. The facility provides full service that includes

design and assembly of experimental equipment and staff to main-

tain the species in a good condition and health over long periods

of time.

4.3 Experimental Design

We have designed our experiment to validate the hypothesis that

feeding can be detected from heart-rate signals of coral reef fish

species. While we ran the experiments in fish tanks, we have spent

a considerable effort to ensure that the conditions were realistic.

For example, the temperature profile of the water was set to follow

seasonal and daily patterns corresponding to different weather

seasons in Townsville, Australia, which is located on the Great

Barrier Reef. The fish interacted with each other and the equipment

during the day, resulting in a wide range of daily activities, such as

fighting, swimming, rubbing, and feeding. ECG and heart-rate data

were impacted by all of these factors.

3This includes the current drawn by CPU, sensors, and NAND flash memory.

4.3.1 Fish species. Coral trout (Plectropomus leopardus) were ob-

tained from the Australian Reef Fish Trading Company and were

wild-caught from reefs around Cairns and Mackay, Australia. Fish

were kept in quarantine tanks with flow-through seawater for a

two-week period during which they were fed two or three times

weekly. Following quarantine and acclimatization, fish were im-

planted with biosensors and transferred into six fish tanks for the

experiment. Each tank was fitted with a lid to prevent fish from

jumping out of the tank and large PVC pipes were provided as

structure and environmental enrichment to the tank.

(a) (b)

Figure 7: Left: fish tank with six coral trouts. Right: coral

trout surgery in progress.

4.3.2 Experimental tanks. For the main experiment, we designed

six fit-for-purpose fish tanks (see Figure 7) in close collaboration

with SeaSim. Each experimental tank held six coral trouts and all

six tanks were located in a temperature controlled room without

daylight. Tanks were supplied by a flow-through of temperature

controlled seawater that was set to maintain desired dissolved

oxygen and ammonia levels in the tanks. The temperature as well

as the artificial lighting intensity were managed by the general

Control System of the SeaSim facility, to replicate the photo-thermo

period seasonal baseline of local reefs. Each of the 6 systems was

equipped with air supply and air stones and, to assist with the

control of ammonia, the tank water was recirculated through a

custom built bio-filter.

Daily fish health checks and key maintenance tasks were per-

formed during all stages of the experiment, including cleaning of

tanks, water changes and visual inspection of each experimental

tank system. In addition, key water quality parameters such as

dissolved oxygen (DO) and ammonia (NH3) were measured and

corrective action was taken immediately if required to ameliorate

the water quality parameters.

4.3.3 Biosensor implantation and fish recovery. Following a two-

week quarantine and acclimatization period, fish were implanted

with our biosensors and 5 commercial Star-Oddi sensors and given a

colored dorsal tag for individual identification. Surgical approaches

followed general practice in literature ( [12, 13]) and in accordance

with our animal ethics approval 4.After surgery, fish were given a

three-week recovery period and placed into the six experimental

tanks (six fish per tank) at a temperature of 24.5°C. Fish were not

fed during the first week of the recovery period to support healing

of the abdominal incision. During the following two weeks of the

4Animal ethics approval was obtained from the James Cook University’s Animal Ethics
Committee with approval number A2314.
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recovery period, fish were fed a maintenance ration every two to

three days. This maintenance ration consisted of approximately 20

to 30 gram of thawed pilchards per coral trout.

4.3.4 Experimental treatment. After the three-week recovery pe-

riod, all six tanks were progressively changed to their target treat-

ment temperature (0.5°C/day). The six tanks were divided into three

different temperature treatments:

(1) tanks 1 and 4 were set at 28.6°C (high-temperature);

(2) tanks 2 and 3 were set at 26.1°C (mid-temperature);

(3) tanks 5 and 6 were set at 23.6°C (low-temperature).

These temperature treatments were subsequently maintained for

a period of six weeks. Afterwards, the fish were individually netted

and euthanized for the removal of the biosensor and subsequent

download of the data.

4.3.5 Feeding trials. The feeding occurred every 2-3 days to give

fish an opportunity to feed up to 11 times. The feed was thawed

pinkies or pilchards most of the time but we also used freshly

killed damselfish once a fortnight (4 adult Acanthochromis per

coral trout). The meal size was randomized for each coral trout,

although it proved difficult to follow the feeding schedule due to

some fish feeding aggressively and other fish refusing to take food.

Observations of feeding were manually recorded in log sheets for

each feeding event and each fish (identified using external tags). Ad-

ditionally, 2 random tanks were instrumented with GoPro cameras

that recorded the whole feeding process.

4.3.6 Discussion on deployment in the wild. As described above,

currently, the fish implantedwith the biologgers need to be recaught

to retrieve the biologgers and the collected data. This is one of the

reasons for our choice of coral trout as the subject species for the

experiment since coral trout stay around the same reef for their

entire lives and are highly likely to be recaught. However, there are

several challenges that should be addressed to enable more effective

deployment of our biologgers in the wild. First, the device has to

be equipped with underwater communication capability to stream

the data or high-level information inferred from the data back to a

gateway and eliminate the need for the retrieval of the biologger.

Second, the size of the biologger ought to be minimized through

optimizing the hardware design. We note that in our experience,

our biologger is one of the best existing solutions and has shown

promise for future deployment in the wild once the underwater

communication component is added. It minimizes communication

bandwidth by running sophisticated algorithms on-board, its sensed

physiological signals are accurate, and its size is similar to the

state-of-the-art commercialized implantable biologgers such as Star-

Oddi’s products [30].

5 PERFORMANCE EVALUATION

We have selected twelve fish from the trials for the analysis in

this section, based on the biosensor performance (some sensors

failed due to hardware/software problems) and based on the feeding

performance of the fish (some fish ate substantially less food than

expected). All of the data comes from our biologgers as none of the

commercial Star-Oddi sensors returned good quality ECG or heart-

rate data. Our conjecture is that despite following the manufacturer

instructions on installing the sensors in the fish, the sensors were

simply too far from the heart, resulting in low signal-to-noise ratio

of the heart-rate signals.

5.1 Heart-rate Estimation

We evaluate the accuracy of our heart-rate estimation algorithm in

comparison with other existing approaches. We randomly selected

100 ECG samples from Fish G1 andmanually labeled the locations of

the peaks corresponding to heartbeats. We performed the labeling

in consultation with our fish physiologist to ensure having high-

quality ground truth.

The evaluation metric that we use is the mean absolute error

(MAE) calculated as the average of the absolute differences between

the ground truth and the estimated median heart-rate values. We

evaluate the performance of our algorithm by comparing it with

three competing methods, which are the wavelet-based algorithm

of [33], filtering-based algorithm of [21] and Labchart [29] software.

Thewavelet-basedmethod applies wavelet transformation and peak

detection to estimate the heart-rate. The filtering-based method

filters the ECG signal using band-pass and low-pass filters with

carefully-tuned bandwidths then detects the peaks of the filtered

signal. Labchart is a popular software tool for life science data

analysis used by fish biologists to analyze fish ECG time-series.

methods proposed filtering-based wavelet-based Labchart

MAE (bpm) 0.14 2.2 30.8 20.9

Table 3: MAE of different heart-rate estimation methods.

Table 3 presents the evaluation results for the four methods. The

results show that the proposed algorithm achieves the lowest MAE

at 0.14 bpm. Due to the noisy nature of the ECG signals collected,

wavelet-basedmethod and Labchart performed poorly. TheMAE for

Labchart andWavelet-based are 20.9 bpm and 30.8 bpm, respectively.

Filtering-based method achieves reasonable accuracy if we tune the

filter bandwidths carefully. Nonetheless, our method achieves 15

times better performance in terms of MAE (0.14 bpm vs. 2.2 bpm).

5.2 Feeding Event Detection

5.2.1 Evaluation Goal and Metrics. The goal of the evaluation in

this section is to demonstrate that our proposed online change

detection algorithm, which is built on the Bayesian change-point

detection algorithm proposed in [1] and devised to cope with con-

strained resources, achieves an accuracy comparable to that of the

original algorithm on both synthetic and real-world datasets. We

are not aware of any existing online change-point detection al-

gorithm suitable for resource-constrained embedded systems or

long-term deployment in real-world scenarios.

We use a number of different evaluation metrics in this section

to demonstrate the performance of different change detection ap-

proaches, namely:

– the false positive rate (FPR): the probability of negative

events being falsely detected as positive events;

– the false negative rate (FNR): the probability of positive

events being falsely detected as negative events;
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Figure 8: Evaluation results on synthetic datasets: the two online algorithms perform similarly for (a) different maximum

chain lengths L and (b) for a wide range of future points. Low approximation error (a) shows that our online algorithm closely

tracks the original one. Finally, while offline algorithm provides better results (c), the performance gap is not significant.

– the approximation error: the average of the absolute differ-

ences of the entries of two vectors containing probabilities

of change;

– the overall error rate (OER): the proportion of false detections

over all positive and negative events;

– the equal error rate: the value of FPR (or FNR) when FPR

and FNR are balanced (become equal);

– the event localization precision: the distance between the lo-

cations of correctly detected events and their corresponding

ground truth.

5.2.2 Evaluations on Synthetic Datasets. The aim of evaluation on

synthetic datasets is to compare our lightweight change-point de-

tection algorithm to prior art, specifically, with the offline Bayesian

approach and the original Bayesian online approach. We call these

algorithms Lightweight Online Bayes, Offline Bayes, and Original

Online Bayes, respectively.

We follow the same approach as in the related literature [28] and

generate the synthetic data by making changes at certain points in

the statistical properties of simulated i.i.d. time-series. Each time-

series consists of 6000 data points drawn from a Gaussian distribu-

tion whose statistical properties, i.e., mean and standard deviation,

change every 1000 data points. Therefore, each time-series data

sequence has 5 change points. We independently generate 30 time-

series each with 5 change points at random locations and report the

evaluation results that are averaged over all 30 simulation trials.

During the evaluation, we observed that FPR is zero in most

cases as the statistic properties remain the same within a segment

until a change point is encountered. Therefore, we use only FNR to

demonstrate the performance of the change detection approaches

with different parameters. In addition, we use OER to evaluate the

performance of the considered algorithms with real-world datasets

as OER combines the false and negative errors and is more suitable

for complex and noisy real-world data.

Figure 8 compares the performance of the algorithms for dif-

ferent parameter values, which include a) the maximum length

of the chain L, which is related to the memory required to store
the relevant parameters, b) the number of future points used to

estimate the probability of change point, and c) the threshold for

detecting change points. Note that parameters a) and b) are not

relevant for the Offline Bayes algorithm.

Figure 8(a) shows the results for FNR. We can observe that

our lightweight algorithm performs better with increasing L and
achieves the same accuracy as the original online Bayes for L > 300.

Moreover, the approximation error between the outputs of the light-

weight and original approaches shows decreasing trend with the

growth of the maximum length indicating that the proposed light-

weight approach can better approximate the original approach. In

real world deployments, we can set the maximum length according

to the available resource.

The impact of the number of future points required to estimate

the current probability of change is shown in Figure 8(b). Themax-

imum length L is set as 300 and the threshold for determining the
change point is set as 0.5. The results show that FNRs of both light-

weight and original algorithms are around 0.08 when the number

of future points is equal to or more than 10. Note that the detection

latency increases when more future points are needed.

Finally, we evaluate FNR of all three approaches with maximum

length and future points parameters set to 300 and 30, respectively.

The results show that the lightweight algorithm achieves similar

FNR as the original online algorithm. Although the offline approach

produced the lowest FNR, the performance gap between these three

approaches is insignificant.

Recall that we do not include FPR in these results as the metric

is very small when using synthetic data. However, the choice of the

threshold entails a trade-off between FNR and FPR, which will be

discussed in the real-world evaluation.

5.2.3 Feeding Event Detection on Fish Datasets. We now evaluate

the performance of our lightweight algorithm on the heart-rate

traces obtained from the ECG signals of fish in the real-world

experiments (see Section 4). We aim to determine whether a fish

feeds during any given day, i.e., a period of 24 hours. Before the

evaluation, we first divide the heart-rate estimates into multiple

24-hour segments with 12 hours overlap to increase the number

of samples for feeding detection. Then, according to the recorded

feeding time-sheet, we mark each sample as positive (containing

feeding events) or negative (with no feeding event). The event

detection algorithms are applied on each segment to yield positive

or negative predictions and the evaluation results are obtained by

comparing the predictions with the ground truth.
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Figure 9: Evaluation results on real-world datasets: the algo-

rithms perform similarly as we vary the key parameters.

We first evaluate the performance of the fish feeding detection

algorithm using the OER metric, subject to different values of max-

imum length, number of future points, and threshold parameters.

Figure 9(a) shows that OER decreases with the increase of maxi-

mum length and levels at around 400. However, the approximation

error keeps decreasing, which is intuitive as the lightweight algo-

rithm can better approximate the original online Bayes with more

data stored in the memory.

Figure 9(b) shows that as the number of future points increases

up to 20, OER drops significantly. OER then levels off and starts

gradually increasing after we reach 80 future points, indicating that

there is an optimal parameter setting that yields the best accuracy.

Intuitively, the algorithm will stop benefiting from the increased

number of future points at a point where the future data stops cor-

relating strongly with food digestion and heart-rate starts getting

impacted by the daily temperature cycle.

We next evaluate OER of all three approaches with different

values of the threshold, see Figure 9(c). We can observe that the

three approaches achieve comparable low error rates and none

shows any superior performance over the others.

The trade-off between FPR and FNR is important in event de-

tection systems. We use FPR and FNR as the metrics to compare

the performance of the three approaches. In a detection system,

both low FPR and FNR are desired. The trade-off between FPR and

FNR should be carefully tuned according to specific requirements

of the target application. The final evaluation results are shown as

the FPR-FNR curve in Figure 9(d). Specifically, for our proposed

lightweight Bayes approach, the equal error rate is 0.15 when FPR

and FNR are balanced, which indicates the algorithm misses the

feeding events with a probability of 15% when 15% of non-feeding

segments are falsely detected as containing feeding events.

Finally, we estimate how close temporally are the detected feed-

ing points to the manually-labeled ground truth. We compare the

locations of the correctly detected feeding events and their corre-

sponding ground truth in the heart-trace traces. The average event

localization precision is about 11 minutes.

6 CONCLUSION AND FUTUREWORK

We address the problem of long-term monitoring of condition and

health of wild fish free-living in coastal ecosystems. We implement

and validate two key algorithms in this paper and present an im-

plantable biologger for in-situ monitoring of fish physiology. The

biologger collects multi-modal signals including ECG, acceleration,

temperature, and pressure, which can be used to estimate heart-rate,

respiration rate, and movement of the fish.

We implanted a number of biologgers in coral trouts in an ex-

periment that ran over a period of ten weeks and collected feeding-

related data in different environmental conditions. We evaluate

our heart-rate estimation and feeding event detection algorithms

using the empirical data from fish trials. The results show that our

algorithms are robust to noise and achieve heart-rate estimation

errors of 0.14 bpm and feeding detection overall error rate of 0.15.

Our novel lightweight change detection algorithm achieves similar

performance to the state-of-the-art change detection algorithms

while significantly reducing their computation andmemory require-

ments. This facilitates implementing the algorithms on embedded

hardware, an important step towards long-term in-situ monitoring

systems that rely on bandwidth-constrained underwater communi-

cations.

In future work, we will extend the biologger with an acoustic

communications interface and implement feeding detection algo-

rithms directly on the device. We aim to validate the approach in

long-term experiments in the wild. Although we have devised the

proposed algorithms specifically to be run on resource-constrained

embedded systems, the implementation is challenging as it has

to be carried out in an optimal fashion to minimize the resource
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consumption. Depending on the availability of the memory and

computational capability as well as the available power budget, cer-

tain hyperparameters may require careful tuning to yield a desirable

trade-off between the competing aspects of resource consumption

and performance. We will also investigate more sophisticated sig-

nal separation and data fusion algorithms to utilize the available

multi-modal data more effectively. For example, one of our goals

is to estimate the respiration rate of the fish from the ECG signal,

which may provide additional information for the study of fish

energetics.
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